If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-400X-4800000=0
a = 1; b = -400; c = -4800000;
Δ = b2-4ac
Δ = -4002-4·1·(-4800000)
Δ = 19360000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19360000}=4400$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-400)-4400}{2*1}=\frac{-4000}{2} =-2000 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-400)+4400}{2*1}=\frac{4800}{2} =2400 $
| 582y+59y=72y+168-4 | | 582+59y=72y+268-4y | | -10x+9=-82 | | 1x÷3+8=2x | | 1x÷8=2x | | X^2+3x+450=0 | | X^2+3x-450=0 | | 10000=7x+x | | 1000=7x+x | | 120-64x=-x+348-14x | | 4x+5=2+x | | -11/5x=3 | | 120-42x=57x+114-14× | | -6(6x-4)=-36x+24 | | 5x+68*2=X+6 | | 36+47x+35-46-46x71=-99 | | -x+2×0=3 | | -21/5x=3 | | 2=(y-14)/2 | | 11a+10=3a-38 | | Y=0.5x³ | | 30/x+2x=17 | | 13x-13=176 | | 10-|4x|=3 | | |3x+1|-|x+9|=0 | | |3x+1|-|x-9|=0 | | −4=2x−6 | | 3x^2+42x+3=0 | | -8=-2n+2n | | 21-2x-6=7x-4x | | 48=103y-102y+7+42 | | n+2(n+1)+3(n+2)=-76 |